Nom:	Devoir surveillé n°1 - Corrigé	1ES - 2017
Prénom:		

Exercice 1 - Calcul algébrique

(4 points)

- 1. Développer, réduire et ordonner l'expression : A = x 3(x+4) + 2x(x-1).
- 2. Développer, réduire et ordonner l'expression : $B=(t-2)(t+2)-(2t-1)^2$
- 3. Factoriser au maximum l'expression : $C=2x(x-3)-x^2(x-3)$
- 4. Réduire au même dénominateur (en précisant les valeurs interdites) puis factoriser si possible : $D = \frac{1}{x} \frac{5x+2}{x+1} + 1$.

1. On développe :

$$A = x - 3(x + 4) + 2x(x - 1)$$

$$=2x^{2}+x-3x-2x-12$$
$$=2x^{2}-4x-12$$

2. On développe:

$$B=(t-2)(t+2)-(2t-1)^{2}$$

$$=t^{2}-4-(4t^{2}-4t+1)$$

$$=t^{2}-4-4t^{2}+4t-1$$

$$=t^{2}-4t^{2}+4t-4-1$$

$$=-3t^{2}+4t-5$$

3. On factorise:

$$C=2 x(x-3)-x^{2}(x-3) =x(x-3)(2-x)$$

4. On factorise:

$$D = \frac{1}{x} - \frac{5x+2}{x+1} + 1$$

$$D = \frac{x + 1}{x(x+1)} - \frac{x(5x+2)}{x(x+1)} + \frac{x(x+1)}{x(x+1)}$$

$$D = \frac{(x+1) - x(5x+2) + x(x+1)}{x(x+1)}$$

$$D = \frac{x+1 - 5x^2 - 2x + x^2 + x}{x(x+1)}$$

$$D = \frac{(x+1) - x(5x+2) + x(x+1)}{x(x+1)}$$

$$D = \frac{x + 1 - 5x^2 - 2x + x^2 + x}{x(x+1)}$$

$$D = \frac{x(x+1)}{x(x+1)}$$

$$D = \frac{-5x^2 + x^2 + x - 2x + x + 1}{x(x+1)}$$

$$D = \frac{1 - 4x^2}{x(x+1)}$$

$$D = \frac{1 - 4x^2}{x(x+1)}$$

$$D = \frac{(1-2x)(1+2x)}{x(x+1)}$$

Les valeurs interdites sont x=0 et x=-1.

Exercice 2 - Forme canonique

(4,5 points)

Écrire chaque polynôme sous sa forme canonique : $f(x)=x^2-4x+3$; $g(x)=-x^2+3x-1$; $h(x)=\frac{1}{4}x^2-\frac{1}{2}x-2$.

On détermine la forme canonique de f.

On reconnaît le début du développement de l'identité remarquable : $(x-2)^2 = x^2 - 4x + 4$.

Alors, la forme canonique de f est : $f(x) = (x-2)^2 - 1$.

On détermine la forme canonique de g.

$$g(x)=-(x^2-3x+1)$$
.

On reconnaît le début du développement de l'identité

remarquable:
$$\left(x-\frac{3}{2}\right)^2 = x^2-3x+\frac{9}{4}$$
.

Alors la forme canonique de g est :
$$g(x) = -\left(x - \frac{3}{2}\right)^2 + \frac{5}{4}$$
. Alors la forme canonique de h est $h(x) = \frac{1}{4}(x-1)^2 - \frac{9}{4}$.

On détermine la forme canonique de *h*.

On résout l'équation h(x)=h(0).

$$h(x)=-2$$

$$\Leftrightarrow \frac{1}{4}x^2 - \frac{1}{2}x = 0$$

$$\Leftrightarrow x \left(\frac{1}{4}x - \frac{1}{2}\right) = 0$$

$$\Leftrightarrow x = 0$$
 ou $x = 2$

On calcule
$$\frac{0+2}{2}=1$$
, puis $h(1)=-\frac{9}{4}$.

Alors la forme canonique de
$$h$$
 est $h(x) = \frac{1}{4}(x-1)^2 - \frac{9}{4}$.

Nom:	Devoir surveillé n°1 - Corrigé	1ES - 2017
Prénom:		

Exercice 3 - Variations

Donner le tableau de variations de chaque fonction sur son ensemble de définition.

1.
$$f(x)=2(x+3)^2-\frac{1}{2}$$
 définie sur [-4;10].

2.
$$g(x) = -\frac{1}{2}(x-2)^2 - 5$$
 définie sur [-5;7].

1. On étudie les variations de *f*. Le coefficient 2 est positif.

La fonction f admet un minimum de $-\frac{1}{2}$ en -3.

On calcule les maxima locaux : $f(-4) = \frac{3}{2}$ et

$$f(10)=337,5$$
.

D'où le tableau de variations :

X	-4	-3	10
f(x)	$\frac{3}{2}$	$-\frac{1}{2}$	337,5

2. On étudie les variations de g.

Le coefficient $-\frac{1}{2}$ est négatif.

La fonction g admet un maximum de -5 en 2. On calcule les minima locaux : g(-5)=-29,5 et g(7)=-17,5 .

D'où le tableau de variations :

Х	– 5	2	7
f(x)	-29,5		-17,5

Exercice 4 - Résolution d'équations

(4 points)

(3,5 points)

Résoudre les équations suivantes.

1.
$$(2x-3)(4-x)=x^2-4$$

2.
$$(x-3)(7-x)=5$$

1. On réduit l'équation :

$$(2x-3)(4-x)=x^2-4$$

 $8x-2x^2-12+3x=x^2-4$
 $0=3x^2-11x+8$

On calcule
$$\Delta = (-11)^2 - 4 \times 3 \times 8 = 121 - 96 = 25$$
.

Les solutions sont :
$$x_1 = \frac{11-5}{6} = 1$$
 et $x_2 = \frac{11+5}{6} = \frac{8}{3}$.

$$S = \left\{1; \frac{8}{3}\right\}$$
.

$$(x-3)(7-x)=5$$

$$7x-x^2-21+3x=5$$

$$0=x^2-10x+26$$

On calcule
$$\Delta = (-10)^2 - 4 \times 26 = 100 - 104 = -4$$
.

Il n'y a pas de solution.

$$S = \emptyset$$
.

Nom:	Devoir surveillé n°1 - Corrigé	1ES - 2017
Prénom:		

Exercice 5 - Résolution de problème

(4 points)

Dans une entreprise, les coûts de fabrication de q objets sont donnés, en €, par $C(q)=0.1q^2+10q+1500$. L'entreprise vend chaque objet à 87€.

1. Déterminer la valeur de q pour que les coûts de fabrication soient égaux à 1610€.

On considère la fonction : $B(q) = -0.1q^2 + 77q - 1500$.

- 2. Démontrer que la fonction qui, à tout nombre q entier positif, associe le bénéfice associé est B(q).
- 3. Pour quelles valeurs de q le bénéfice est-il nul?
- 4. Pour quelle valeur de q le bénéfice est-il maximum? Quel est le bénéfice maximum?

1. On résout :
$$C(q)=1610$$
 .
 $\Leftrightarrow 0.1q^2 + 10q + 1500 = 1610$
 $\Leftrightarrow 0.1q^2 + 10q - 110 = 0$

On calcule
$$\Delta = 10^2 - 4 \times 0.1 \times (-110) = 144$$
.
Les racines sont $x_1 = \frac{-10 - 12}{0.2} = -110$ et $x_2 = \frac{-10 + 12}{0.2} = 10$.

Puisqu'on ne peut pas fabriquer un nombre négatif d'objets, il faut fabriquer 10 objets pour que les coûts de fabrication soient 1610€.

2. Pour calculer le bénéfice, on soustrait les coûts de fabrication aux recettes.

Alors, le bénéfice est de 87q - C(q) = B(q).

3. On résout :
$$B(q)=0$$
 .
 $\Leftrightarrow -0.1q^2 + 77q - 1500 = 0$

On calcule
$$\Delta = 77^2 - 4 \times (-0.1) \times (-1500) = 5329$$

Les racines sont $x_1 = -\frac{-77 - 73}{0.2} = 750$ et $x_2 = -\frac{-77 + 73}{0.2} = 20$.

Le bénéfice est nul si on fabrique 20 objets ou 750 objets.

4. On cherche la forme canonique de B(q). On calcule
$$\frac{20+750}{2} = \frac{770}{2} = 385$$
 et B(385)=13 322,5.

Le bénéfice maximum peut être réalisé si on fabrique 385 objets. Le bénéfice est alors de 13 322,50€.